

Fedmsg Migration Tools

A set of tools to assist in Fedora’s migration from fedmsg to an broker-based
message system.

Migration Documentation

	Migration Overview
	Migrate from what?

	Why Migrate?

	Why AMQP and RabbitMQ

	The Plan

	Demo

	Performance
	Current Message Rates

	RabbitMQ Performance

	Reliability
	Clustering

	High Availability Queues

Project Documentation

	Contributing
	Guidelines

	Release Notes
	0.1.2 (2018-09-13)

Migration Overview

Fedora’s infrastructure makes heavy use of the event-driven services. In this
pattern, one service emits a message when a particular event occurs and a
different service uses that event to trigger some work.

As a concrete example, release-monitoring.org polls upstream projects for new
versions. When it discovers a new version, it emits a message. When
the-new-hotness receives this message, it tries to automatically update the
project’s spec file and build a new version for testing.

Migrate from what?

Fedora currently sends messages using ZeroMQ. ZeroMQ provides a familiar socket
API and all the basic building blocks necessary for common (and not-so-common)
message passing patterns.

Why Migrate?

Our current usage of ZeroMQ is limited to its PUB/SUB sockets. There’s no
broker. Although it’s true that a broker introduces a point of failure, the
broker offers a number of useful features out of the box like guaranteed
delivery, durable message queues, authentication and authorization, monitoring,
etc.

It’s true ZeroMQ can be used to achieve all the features a broker like RabbitMQ
provides. It’s a great library to start with if if you’re interested in building
a message broker. Fedora shouldn’t try to build a broker, though.

Why AMQP and RabbitMQ

The core requirements for Fedora is a messaging protocol that offers:

	Messages must be delivered to consumers at least once

	Clients must be authenticated to publish messages and authorized to publish
using a given topic

RabbitMQ is a mature, well-established broker that supports AMQP v0.8.0,
v0.9.0, and v0.9.1 as well as 0.9.1 with a number of protocol extensions. It
also supports the STOMP (v1.0, v1.1, and v1.2) and MQTT (v3.1.1 at this time)
protocols via plugins.

We already run RabbitMQ in Fedora infrastructure and have some familiarity with
it. It supports authentication and topic-based authorization [https://www.rabbitmq.com/access-control.html#topic-authorisation]. With the
RabbitMQ publisher ack extension, publishers can be confident their messages
were published and consumers will receive it at least once.

There are other message protocols: STOMP, MQTT, and AMQP 1.0 just to name a
few. There are other message brokers: Apache ActiveMQ, Qpid, and Mosquitto,
for example. Some other protocols are capable of meeting our needs, and the
broker Fedora infrastructure wishes to run is a choice best left to the system
administrators.

This document assumes AQMP and RabbitMQ for simplicity and to demonstrate a
concrete system that can meet Fedora’s needs. It would be reasonably straight-
forward to implement the Python API (and message bridges) using, for example,
STOMP.

The Plan

This plan assumes the following requirements:

	No flag day.

	Don’t disrupt any services or applications.

	Don’t break any services outside of Fedora’s infrastructure relying on these
messages.

Deploy a Broker

The first step is to deploy a broker in Fedora to use. The broker should support
(at a minimum) AMQP. RabbitMQ is probably a safe choice, but other brokers that
support AMQP (0.9.1) are fine.

Building Bridges

In order to avoid a flag day, bridges from AMQP to ZeroMQ and ZeroMQ to AMQP
need to be implemented and deployed. Some care needs to be taken to ensure
messages don’t get looped endlessly between AMQP and ZeroMQ. In order to avoid
endless loops, two AMQP topic exchanges will be used. These will be used to
separate those messages originally published to ZeroMQ from those originally
published to AMQP. We’ll call these exchanges “amq.topic” and “zmq.topic”. The
setup is as follows:

	The ZeroMQ to AMQP bridge publishes message to the “zmq.topic”
exchange, using the ZeroMQ topic as the AMQP topic.

	AMQP publishers publish to the “amq.topic” exchange.

	The AMQP to ZeroMQ bridge binds a queue to the “amq.topic” exchange and
publishes all messages to a ZeroMQ PUB socket. This socket is added to the
list of sockets all fedmsg consumers connect to.

	When a ZeroMQ consumer is migrated to AMQP, the queue it sets up is bound
to both the “zmq.topic” and “amq.topic” with the topics it’s interested in.

[image: Diagram of the AMQP and ZMQ bridges]A diagram of how messages are routed using the AMQP <-> ZMQ bridging.

This allows both fedmsg publishers and subscribers to migrate at their leisure.
Once all Fedora services are migrated, the ZeroMQ to AMQP bridge can be turned
off. If Fedora wishes to continue supporting the external ZeroMQ interface, the
AMQP to ZeroMQ bridge should continue to be run.

Testing

In order to validate that the bridges are functioning, a small service will be
run during the transition period that connects to fedmsg and to the AMQP queues
to compare messages. This will help catch format changes, configuration issues
that lead to message loss, etc. It will also likely have false positives since
ZeroMQ PUB/SUB sockets are designed to be unreliable and determining if a
message is lost or merely slow to be delivered is a difficult problem.

An initial implementation of this service is provided by these tools, see the
fedmsg-migration-tools CLI for details.

Converting Applications

After the bridges are running, applications are free to migrate. Rather than
attempting to add support to the existing fedmsg APIs, a new API has been
created. The reason for this is that the fedmsg API doesn’t offer useful
exceptions on errors and has a huge dependency chain we don’t need.

This new library, fedora-messaging [https://fedora-messaging.readthedocs.io/en/latest/index.html], handles a lot of the boilerplate code and
offers some useful APIs for the simple publisher and consumer. However, users are
free to use the AMQP client libraries directly if they so choose.

Supporting External Consumers

Access to the AMQP broker won’t be available to outside consumers, so even
after all applications have migrated to AMQP, we can continue to run the AMQP
to ZeroMQ bridge so external users can receive messages via ZeroMQ.

Demo

Using the fedora-messaging library, fedmsg-migration-tools offers alpha-quality
implementations of the bridges as well as the verification service. You can
set these up at home with relative ease:

	Install RabbitMQ. On Fedora, sudo dnf install rabbitmq-server

	Start RabbitMQ: sudo systemctl start rabbitmq-server

	Enable the management plugin for a nice HTTP interface with sudo
rabbitmq-plugins enable rabbitmq_management

	Navigate to http://localhost:15672/ and log in to see the monitoring
dashboard. The default username is guest and the password is guest.

	Install the migration tools:

mkvirtualenv --python python3 fedmsg_migration_tools
pip install fedmsg-migration-tools

	Start the ZeroMQ to AMQP bridge:

fedmsg-migration-tools zmq_to_amqp --zmq-endpoint "tcp://fedoraproject.org:9940" --zmq-endpoint "tcp://release-monitoring.org:9940"

	In a second terminal, start the AMQP to ZeroMQ bridge:

workon fedmsg_migration_tools
fedora-messaging consume --callback="fedmsg_migration_tools.bridges:AmqpToZmq"

	Congratulations, you now have a functional bridge to and from AMQP. ZeroMQ
messages are being published to the “zmq.topic” exchange, and any messages
published to the “amq.topic” are bridged to ZeroMQ publishing sockets bound
to all available interfaces on port 9940.

	Run the verification service to confirm messages are available via both
AMQP and ZeroMQ:

fedmsg-migration-tools verify_missing --zmq-endpoint "tcp://fedoraproject.org:9940" --zmq-endpoint "tcp://release-monitoring.org:9940"

Performance

One concern about using a broker rather than ZeroMQ has been that a broker
could not keep up with the scale of Fedora’s messaging needs. See the old
fedmsg documentation [https://fedmsg.readthedocs.io/en/0.18/overview/#mq-or-going-for-broke-rless] for details on these concerns. However, we now have a
multi-year history of messaging trends in Fedora’s infrastructure thanks to
datagrepper [https://apps.fedoraproject.org/datagrepper/], and we can compare these with the throughput of RabbitMQ using
various durability settings, server configuration, and hardware.

Current Message Rates

Datagrepper connects to all ZeroMQ publishers and records the published
messages in a PostgreSQL database. Using this, we can get data about the number
of messages published per second.

Note

All numbers were collected using 1500 UTC on April 26, 2018 as the
starting point.

	Over the last hour 3,905 messages were published [https://apps.fedoraproject.org/datagrepper/raw?rows_per_page=1&delta=3600&end=1524754800]
which is on average 1.085 messages per second.

	Over the last 24 hours 70,802 messages were published [https://apps.fedoraproject.org/datagrepper/raw?rows_per_page=1&end=1524754800&delta=86400]
which is on average 0.819 messages per second

	Over the last 4 weeks, 1,653,835 messages were published [https://apps.fedoraproject.org/datagrepper/raw?rows_per_page=1&end=1524754800&delta=2419200]
which is on average 0.684 messages per second

	Over the last 365.25 days, 20,896,220 messages were published [https://apps.fedoraproject.org/datagrepper/raw?rows_per_page=1&end=1524754800&delta=31557600]
which is on average 0.662 messages per second

Obviously, these are just averages and will vary by time of day, year, etc.

RabbitMQ Performance

Before looking at actual numbers, it is important to understand what affects
RabbitMQ’s performance. Note that these are all trade-offs between reliability
and performance, so we are free to tweak them as necessary to get the balance
we want.

Publishing

The largest factor that impacts publishing is the level of durability used.

	Transient - Messages are not durable; if the broker restarts queued messages
are lost. Messages may be paged out to disk if there are memory constraints,
of course.

	Durable without transactions - Messages persist across broker restarts.
However, publishers receive an acknowledgment from the broker before the
message is persisted to disk so there is a window of time when messages can
be lost without publishers knowing it.

	Durable with transactions - Use standard AMQP 0.9.1 channel transactions to
ensure messages are published. According to RabbitMQ documentation [https://www.rabbitmq.com/confirms.html#publisher-confirms] this can
decrease throughput by a factor of 250.

	Durable with Confirm extension - RabbitMQ extension to AMQP which sends an
acknowledgment to the publisher only after the broker has successfully
persisted the message in the same way consumers acknowledge messages.

Consuming

When consuming, using a low pre-fetch value and acknowledging messages
individually can impact message through-put.

Both

	RabbitMQ performs best when queues are empty [http://www.rabbitmq.com/blog/2011/09/24/sizing-your-rabbits/]. If messages
are stacking up in queues, more CPU time is required per message.

	Queues are are bound to a single core. If a queue’s throughput is too slow,
multiple queues should be used if possible.

	In a high availability setup, queues can be mirrored to multiple nodes in the
cluster, which adds additional latency to publishing and consuming.

The Numbers

Single Node Cluster

All numbers were obtained using a single node RabbitMQ 3.6.15 cluster running
on a Pine64 LTS which has a Cortex A-53 ARM processor and 2GB of RAM. The
publisher used Pika as the client with a blocking (synchronous) connection.

Transient Publishing

With no consumer attached to the queue, message throughput peaked at around
2,000 messages per second. Since memory was limited, messages regularly had to
be paged out to the disk, during which time new messages were not accepted.
After 10 minutes, the queue accumulated 675,255 messages. The process memory
for the queue was approximately 55MB. Message bodies combined to be around 560MB.

[image: The RabbitMQ overview during publication using transient messages]
This image shows the RabbitMQ management console after 10 minutes of
publishing. Note the dips in publishing due to paging messages out to
permanent storage.

Durable Publishing

With no consumer attached to the queue, message throughput peaked at around
1,500 messages per second. After around 10 minutes, the queue accumulated
676,214 messages. Again, the process memory was approximately 55MB and message
bodies combined to be around 560MB. Interestingly, this performs as well as
transient messages, but this is likely due to the extremely limited memory on
the Pine64.

[image: The RabbitMQ overview during publication using durable messages]
This image shows the RabbitMQ management console after 10 minutes of
publishing.

Three Node Cluster

All numbers were obtained using a three node RabbitMQ 3.6.15 cluster running
on a Pine64 LTS, a Raspberry Pi 3B+, and a Minnowboard Turbot Dual-Core. The
publisher used Pika as the client with a blocking (synchronous) connection.
The queue was mirrored to all three nodes in the cluster.

Durable Publishing

With no consumers attached to the queue, message throughput peaked at around
800 messages per second. After around 10 minutes, the queue accumulated 383,428
messages.

[image: Figure of performance while publishing to a queue mirrored across three nodes.]
Publishing to a queue mirrored across 3 nodes for 10 minutes.

Reliability

RabbitMQ deployments support clustering [https://www.rabbitmq.com/clustering.html], high availability queues [https://www.rabbitmq.com/ha.html], and
federation [https://www.rabbitmq.com/federation.html]. Since Fedora does not want a single point of failure or regular
downtime for updates, it would be best to use clustering with high availability
queues.

Clustering

For complete details, consult the clustering [https://www.rabbitmq.com/clustering.html] documentation. A few things to
note:

	All nodes in the cluster need to be running the same minor (same y version in
a x.y.z release) so a major upgrade to Erlang requires downtime.

	Clustering should only be used on a LAN. See the documentation on network
partitions [https://www.rabbitmq.com/partitions.html] for details. Federation [https://www.rabbitmq.com/federation.html] is designed for sharing across WANs.

High Availability Queues

RabbitMQ supports mirroring queues across nodes in a cluster in order to provide high availability queues [https://www.rabbitmq.com/ha.html].

Again, consult RabbitMQ documentation for the details, but a few highlights are:

	Mirroring can be applied to a subset or all queues

	Queues can be mirrored to all nodes in a cluster or just a few.

Contributing

Thanks for considering contributing to fedmsg-migration-tools, we really appreciate it!

Quickstart:

	Look for an existing issue [https://github.com/fedora-infra/fedmsg-migration-tools/issues] about the bug or
feature you’re interested in. If you can’t find an existing issue, create a
new one [https://github.com/fedora-infra/fedmsg-migration-tools/issues/new].

	Fork the repository on GitHub [https://github.com/fedora-infra/fedmsg-migration-tools].

	Fix the bug or add the feature, and then write one or more tests which show
the bug is fixed or the feature works.

	Submit a pull request and wait for a maintainer to review it.

More detailed guidelines to help ensure your submission goes smoothly are
below.

Note

If you do not wish to use GitHub, please send patches to
infrastructure@lists.fedoraproject.org.

Guidelines

Python Support

The fedmsg-migration-tools run on Python 3.4 or greater. This is
automatically enforced by the continuous integration (CI) suite.

Code Style

We follow the PEP8 [https://www.python.org/dev/peps/pep-0008/] style guide
for Python. This is automatically enforced by the CI suite.

We are using Black <https://github.com/ambv/black> to automatically format
the source code. It is also checked in CI. The Black webpage contains
instructions to configure your editor to run it on the files you edit.

Tests

The test suites can be run using tox [http://tox.readthedocs.io/] by simply
running tox from the repository root. All code must have test coverage or
be explicitly marked as not covered using the # no-qa comment. This should
only be done if there is a good reason to not write tests.

Your pull request should contain tests for your new feature or bug fix. If
you’re not certain how to write tests, we will be happy to help you.

Release notes

To add entries to the release notes, create a file in the news directory
with the source.type name format, where type is one of:

	feature: for new features

	bug: for bug fixes

	api: for API changes

	dev: for development-related changes

	author: for contributor names

	other: for other changes

And where the source part of the filename is:

	42 when the change is described in issue 42

	PR42 when the change has been implemented in pull request 42, and
there is no associated issue

	Cabcdef when the change has been implemented in changeset abcdef, and
there is no associated issue or pull request.

	username for contributors (author extention). It should be the
username part of their commits’ email address.

A preview of the release notes can be generated with towncrier --draft.

Licensing

Your commit messages must include a Signed-off-by tag with your name and e-mail
address, indicating that you agree to the Developer Certificate of Origin [https://developercertificate.org/] version 1.1:

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Use git commit -s to add the Signed-off-by tag.

Releasing

When cutting a new release, follow these steps:

	update the version in fedmsg_migration_tools/__init__.py

	generate the changelog by running towncrier

	change the Development Status classifier in setup.py if necessary

	commit the changes

	tag the commit

	push to GitHub

	generate a tarball and push to PyPI with the commands:

python setup.py sdist bdist_wheel
twine upload -s dist/*

Release Notes

0.1.2 (2018-09-13)

Features

	Add Systemd service files and an RPM spec file.
(PR#10 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/10])

	Add validation and signing for bridges.
(PR#2 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/2])

Bug Fixes

	Fix up verify_missing config.
(PR#2 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/2])

	Wrap messages sent to ZMQ with fedmsg format.
(PR#9 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/9])

Development Changes

	Use towncrier to generate the release notes, and check our
dependencies’ licenses.
(PR#10 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/10])

	Use Mergify.
(PR#7 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/7])

	Use Black [https://github.com/ambv/black].
(PR#8 [https://github.com/fedora-infra/fedmsg-migration-tools/pull/8])

Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request
reviews for this release:

	Aurélien Bompard

	Jeremy Cline

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/OverviewSingleTransientQueue.png
Queued messages last ten minutes 7

750k
so0k
250k

o

1650 1652 1654 1656 1658
Message rates last ten minutes 7
1005
7.5k,
5.0k,
25k
0.0k
1650 1652 1654 1656 1658

Ready
Unacked

Total

Publish

Publisher
confirm

Return

675,255
wo

675,255

1658/ Disk read
000 Disk write

0.00/5

0.00/5

0.00/5

_static/ajax-loader.gif

_images/OverviewClusterDurableQueue.png
Queued messages last ten minutes ?

k
400 Ready = m 383,428
300k
200k Unacked | 0
100k
ok Total | m 383,428

00:24 00:26 00:28 00:30 00:32

Message rates last ten minutes ?

Publish m 728/s Disk read W 0.00/s
Publisher Disk write W 767/s
confirm 170.00/s
00:26 00:28 00:30 : Return W 0.00/s

Global counts ?

v Nodes

Name File descriptors ? Socket descriptors ? Erlang processes Memory Disk space

[0 Es T e s s (e
1024 available 829 available 1048576 available 754MB high watermark 48MB low watermark

[o s pEwvs | ioows

1024 available 829 available 1048576 available 799MB high watermark 48MB low watermark

1024 available 829 available 1048576 available 385MB high watermark 48MB low watermark

_images/OverviewSingleDurableQueue.png
Queued messages last ten minutes 7

750K

500€
2506

o
1726 1728 1730

Message rates last ten minutes 7

20k

[z

1734

1726 1728 17:30

Ready
Unacked

Total

Publish

Publisher
confirm

Return

676,214
wo

676,214

mas2s Disk read
000 Disk write

0.00/5

0.00/5

0.00/5

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Fedmsg Migration Tools

 		
 Migration Overview

 		
 Migrate from what?

 		
 Why Migrate?

 		
 Why AMQP and RabbitMQ

 		
 The Plan

 		
 Deploy a Broker

 		
 Building Bridges

 		
 Testing

 		
 Converting Applications

 		
 Supporting External Consumers

 		
 Demo

 		
 Performance

 		
 Current Message Rates

 		
 RabbitMQ Performance

 		
 Publishing

 		
 Consuming

 		
 Both

 		
 The Numbers

 		
 Reliability

 		
 Clustering

 		
 High Availability Queues

 		
 Contributing

 		
 Guidelines

 		
 Python Support

 		
 Code Style

 		
 Tests

 		
 Release notes

 		
 Licensing

 		
 Releasing

 		
 Release Notes

 		
 0.1.2 (2018-09-13)

 		
 Features

 		
 Bug Fixes

 		
 Development Changes

 		
 Contributors

_static/up.png

